
RISE 1.3.0 Consensus change

Andrea B, Ma�eo C.

This document will introduce 4 new breaking changes that we’ll deploy in RISE star�ng
from version 1.3.x.
All the 3 consensus changes will be deployed in mainnet before the end of the year as
long as community does not provide valid arguments against one or more of the 3
proposed changes.

1. Standby Delegates incen�ves

Current dPoS system allows only a specific number of fixed delegates. Delegates are
chosen by sor�ng them using a ranking factor which usually boils down to the
“Cumula�ve weight of votes received”.

Defini�ons & Assump�ons:

Let n be the Number of Delegates that forge in every round
Let m be the number of Delegates from which the n delegates are chosen from
Let W(d) be the weight of delegate d .
Let R(d) be the rank of delegate d using the W(d) as a sor�ng mechanism
Let P(d) be the Probability of delegate d to have a slot in the current round.

Current implementa�ons

,

Problems

There is no immediate incen�ve for StandBy delegates;
StandBy delegates can not ac�vely par�cipate in the network;
Ac�ve Delegates are not incen�vized in obtaining more votes;

n = m

P (d) = {
1,
0,

if R(d) ≤ n

otherwise

Generally a rela�vely high gap exists between the last ac�ve and the first standby
delegate.

Proposed solu�on:

Instead of having m=n we propose to set m to a greater value and pick the n delegates
out of m set so that the chances for a delegate having of being chosen as
forger in round r is propor�onal to its and not fixed as in the current
implementa�on.

Mathema�cally defining the probability of being chosen is not straigh�orward. For now
let’s just define the expected outcome for which is:

Example:

m=202, n=101.
Every delegate having could be chosen in the next round

Complicances and proposed algorithm

Randomly choosing out of a weighted set of delegates is not an easy task.

Assump�ons & defini�ons

Let’s define as ordered by rank delegates from
rank 1 to m
So that:

Let’s define as the randomly sorted list of delegates in using
 for round i .

In order to reach consensus, every node should independently compute the same
.

Note:

Hence we need to find a way to sort using . Such problem is
called Weighted Random Sampling and a possible was provided by

R(d) ≤ m

W (d)

P (d)x

P (d) =x andP (d) ≥{
⌊0 : 1⌉,
0,

if x ≤ m

otherwise x P (d +x 1)∀x

R(d) < 202

 (n
m)

D(m) : d ∈i D ∣R(d) <i m

∣D(m)∣ = m

R(d) <i R(d)∀ii+1

W (d) ≤i W (d)∀ii+1

S(D(m), r)i D(m)
W (d)

S(D(n), r)i
∣S(D(m), r)∣ =i n

D(m) W (d) ∀ d ∈ D(m)
O(n log n)2

Efraimidis, Spirakis in 2005. (Further op�miza�ons are possible to lower complexity up

to .

Algorithm

Input: D(m),
Output S(D(m))

1.
2.

Caveats

1. Both steps needs a random number generator. One of the requirements was a
stable output. In order to achieve that we will need to use a stable seed for the
RNG.

2. When Applying over we need to make sure to sort the elements
using an extra factor to ensure there are no ambiguous results over elements
having the same weighted result. We propose the use of delegate publicKey for
this purpose.

Random seed

As previously stated the random seed needs to be carefully chosen. The easier possible
random seed would be using the round index.
But, using such seed will give the whole network the ability to precompute
and try to cheat by slightly changing their rank posi�on.

Let’s define:

 as the height at which at least one network par�cipant knows the
seed for Round r .

 as the height at which the majority of network par�cipants knows the
seed for Round r .

Then:

Example. When using r as parameter then since all the
seeds can be precomputed since genesis.

A safer approach would be using the lastBlockIn(r) computed ID . This will produce
the following effect:

O(m log)2 m

n

r i

tmpSD : WRS(D(m),n, seed(r))i

return : shuffle(tmpSD, seed(r))i

WRS() D(m)

S(D(n))

shm(r)

shM(r)

shm(r) ≤ shM(r) < firstBlockIn(r)

shm(r) = shM(r) = 0

http://utopia.duth.gr/~pefraimi/research/data/2007EncOfAlg.pdf

The reason for value is because the lastBlockIn(r-1) forger will know the
seed before the block is actually accepted by the network. Possibly, the last delegate in
each round, could include a cheap transac�on that will serve as nonce to change the
ID un�l the generated seed solves his agenda.

Removing chea�ng incen�ves

To discourage last round forger to misbehave, we will exclude him from the next round
effec�vely removing any of his incen�ves to cheat.

To rebalance the newly missed round we’ll ar�ficially set the last block forger in a round
to the one who forged a last block in around less recently.

This will also improve decentraliza�on as we can be certain that delegates in Round+1
are not the same as the delegates in Round (or Round+2).

Pros

RISE has 101 ac�ve delegates and ~97% of the vo�ng power is spread among the top
101 delegates leaving no room for a new standby delegate to join the ac�ve delegates.
At the �me of wri�ng there are about 110 nodes running the mainnet core clearly
proving that standby delegates has no real incen�ve in maintaining a node running.

By picking the next 101 forgers from a pool of, let’s say, 150 delegates; all the delegates
in such ranking range will get a chance to forge a block hence providing incen�ves to
maintain a node.

Furthermore, community will be more inclined to vote for a new promising delegate as
they’ll instantly increase the chance for the newcomer to forge in the next round
allowing him to prove himself.

2. Produc�vity as a ranking factor

In RISE a delegate could miss several blocks and not get penalized for his poor
commitment.

shm(r) = lastBlockIn(r − 1).height − 1
shM(r) = lastBlockIn(r − 1).height

shm(r)

What we propose is to use a mechanism already adopted by Adamant . Such
improvements slightly change the vo�ngWeight formula by also mul�plying the result
with with some caveats. Note: mB => missedBlocks, pB => producesBlocks

The resul�ng vo�ng formula will be something like

Example: Given a delegate with a vo�ngWeight of 100, 50 missed blocks and 950
produced blocks, the will evaluate to = 95.
Example 2: 100 missed blocks, 99 produced blocks and 60 vo�ngWeight will s�ll result
60 �ll the next block is either produced or missed.

Immediate effects on RISE Mainnet

There are several uncaring delegates that did not upgrade their node and are not forging
for months. They’ll see their vo�ng weight reduced and their rank along with it.

Long run effects

We expect a much more prompt response to network changes, forks and node updates
once this hits mainnet.

3. Fair votes system

The problem

In mul� vote DPoS blockchain where vo�ng weight is not split among voted delegates
there is a high risk for organized groups and cartels to take over the blockchain.

A solu�on

We think that if an account votes for mul�ple delegates at once, then its vo�ng weight
should be propor�onally split among all voted delegates.
As of now, if an account with 100 RISE votes 2 different delegates they will both get
100 worth of weight.
As you may know RISE only allows 1 vote so this improvement won’t likely cause any

2

pB+mB

pB

w(d) = votingWeight(d) ⋅ {
1,

 ,
pB(d)+mB(d)

pB(d)
if mB(d) + pB(d) ≤ 200

otherwise

w(d)

http://adamant.im/

direct effect on RISE.
We need to keep in mind that RISE aims to be a blockchain pla�orm where external
developers can decide their own logic.

Every �me we, at RISE, decide to change something we have to carefully evaluate
possible bu�erfly effects over future sidechain implementa�ons built upon RISE.

4. Delegates Banning

The problem

As previously stated, RISE Mainnet currently has several delegates who did not update
their servers and do not care about maintaining their nodes.

As a result these uncaring delegates are effec�vely hur�ng the network.

Unfortunately, even with the previous improvements, these delegates will probably
always have a chance of being picked as one of the next forgers.

For this reason we’re going to introduce a new delegate banning mechanism.

A solu�on

If a delegate misses enough blocks in a row, the network will automa�cally filter him
out effec�vely assigning him a probability equal to zero of being chosen amongst the
next round forgers.

We believe that allowing 3 days for a delegate to restore their node could be a good
tradeoff.

When a delegate is banned from the network there is no turning back. He will never be
able to forge again! However, he is allowed to create another account and register a
new delegate; he will also need to ask his previous voters to support him proving he
resolved the solu�on.

Conclusions

3

https://en.wikipedia.org/wiki/Butterfly_effect

We believe that enabling this now will be essen�al in the very near future of RISE.

We invite everyone who wants to par�cipate the discussion to join our slack.

Changelog

v2: 2018-11-16:
Added Peer banning
Changed an�-cheat policy for last round forger
Simplified math proposed solu�on

v1: 2018-11-01

http://slack.rise.vision/

